Efficient Numerical Solution of SteadyFree-Surface Navier–Stokes Flow
نویسندگان
چکیده
Numerical solution of flows that are partially bounded by a freely moving boundary is of great importance in practical applications such as ship hydrodynamics. The usual method for solving steady viscous free-surface flow subject to gravitation is alternating time integration of the kinematic condition, and the Navier– Stokes equations subject to the dynamic conditions, until steady state is reached. This paper shows that this time integration approach is often inefficient. It proposes an efficient iterative method for solving the steady free-surface flow problem. The new method relies on a different but equivalent formulation of the free-surface flow problem, involving a so-called quasi free-surface condition. The convergence behavior of the new method is shown to be asymptotically mesh-width independent. Numerical results are presented for two-dimensional flow over an obstacle in a channel. The results confirm the mesh-width independence of the convergence behavior, and comparison of the numerical results with measurements shows good agreement. c © 2001 Elsevier Science
منابع مشابه
A comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملNumerical Solution of Steady Free-Surface Navier-Stokes Flow
The usual time integration approach for solving steady viscous free surface flow problems has several drawbacks. We propose instead an efficient iterative method, which relies on a different but equivalent formulation of the free surface flow problem, involving a so-called quasi free-surface condition. Furthermore, we present a method for analyzing the properties of wave solutions of the discre...
متن کامل3D Finite Element Modeling of Free-Surface Flows with Efficient k − Turbulence Model and Non-hydrostatic Pressure
Validation of 3D finite element model for free-surface flow is conducted using a high quality and high spatial resolution data set. The present research finds its motivation in the increasing need for efficient management of geophysical flows such as estuaries (multiphase fluid flow) or natural rivers with the complicated channel geometry (e.g. strong channel curvature). A numerical solution is...
متن کاملThree-Dimensional Micropolar Flow due to a Stretching Flat Surface†
A numerical solution of the steady boundary layer equations under similarity assumptions is obtained for the three-dimensional flow of a micropolar fluid over a continuous stretching surface. The case when microrotation vector is zero on the solid surface is considered. Using properly similarity variables, the three-dimensional Navier – Stokes equations are reduced to a set of four coupled non-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000